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Abstract

The Volume-to-Point (VP) problem is a base problem of heat conduction optimization. The nonlinear two-dimensional optimi-
zation problem of VP is discretized and transformed to a combinatorial optimization problem, which can be solved by some modern
optimization algorithms. Algorithms for VP problem using simulated annealing and genetic algorithm are developed. Results for
different cases are obtained using these algorithms. Analyses of the results and algorithms are also presented, that shows these algo-
rithms are better than bionic optimization algorithm and constructal theory for VP problem, and can be generalized to complex
conditions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Volume-to-Point (VP) or Area-to-Point heat conduc-
tion problem was originally defined by Bejan [1,2]: Con-
sider a finite volume with uniform heat source inside,
which is cooled through a small patch of heat sink located
on its boundary. A finite amount of high conductivity
material can be inserted to the volume. Determine the
optimal distribution of high conductivity material through
the given volume such that the highest temperature is
minimized.

The VP problem is a fundamental problem of cooling
for electronics. With increasing of power, as well as
decreasing size of electronics, the cooling problem
becomes increasingly important. The heat generated inside
of electronics must be ejected outside quickly or the tem-
perature will exceed the limit. Due to the small size, con-
vective cooling method is impractical because the ducts
take too much space. The problem can be overcome by
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construction of high efficient conductive path in the elec-
tronics. By insertion of high conductivity material such
as diamond or carbon fiber the heat inside can be ejected
more effectively. How to construct the heat-transport path
using a limited amount of high conductivity material to
minimize the highest temperature is an optimization prob-
lem. VP problems can also be found in many engineering
fields, such as heating or cooling chemical reaction, cool-
ing food [3] and increasing the thermal conductivity of
energy storage media by carbon fibers [4]. Further more,
VP problem has applications in a wide range of dissimilar
sciences such as biology, economics, urban transportation,
etc. [2,5–8].

In general, VP problem is a geometric optimization to
minimize the flow resistance of a volume. To solve VP
problem, Bejan [1] presented tree-network constructs based
on constructal theory. The process of constructal theory
starts up with an optimal element area, and then assembles
the areas to a larger area. The heat-transport path got by
constructal theory is like a tree with several levels of
branches, in which number and size of branches of each
level are optimized to minimize highest temperature.
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Nomenclature

A coefficient matrix
b vector of source term
k̂ ratio of kp and k0

K number
k thermal conductivity
k0 thermal conductivity of base material
kp thermal conductivity of high conductivity mate-

rial
L length of square area
M population
m number of high conductivity element
N number of total elements
n grid number of length
P distribution of high conductivity material
p material type of element
q heat generation rate per unit volume
T temperature

t annealing temperature
Tm maximum temperature
Ts temperature of sink
V total volume
Vp volume of high conductivity material
x, y Cartesian coordinates

Greek symbols

a factor of annealing
DT temperature difference
/ filling ratio
q nondimensional thermal resistance

Subscripts

i index of element
k step number of annealing

Fig. 1. 2D Volume-to-Point problem.
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Constructal theory has many successful applications in
heat conduction, flow, economics and other fields in both
engineering and nature [2]. In Ref. [2], Bejan also presented
several other algorithms to solve VP problem. The con-
structal theory is based on assumptions that kpjk0 and
the volume fraction of high conductivity material is small.
Ghodoossi [8,9] indicated that higher order assembly dose
not always improve the performance, for k̂/ < 8, the ele-
ment area is better than high order assembly, and for
k̂/ > 8, the first order assembly is the best.

Xia [10], Guo [11] and Cheng [12] developed bionic opti-
mization algorithm to solve VP problem. The principle
used in the algorithm indicates that the mean temperature
is lowest when the temperature gradient distribution of the
volume is most uniform. The bionic optimization imitates
the biological evolution in nature, which consists of a gen-
eration process and a degeneration process. In each step of
the evolution process, high conductivity material is shifted
to the position with highest temperature gradient from the
position with lowest temperature gradient. The mean tem-
perature is getting lower while the evolution going on. The
‘‘best” distribution is got when the mean temperature is not
lower anymore. Bionic optimization can get better solution
than constructal theory [12].

The objective of bionic optimization algorithm is to
minimize the mean temperature, but not the highest tem-
perature. Simulations by authors of this article show that
results of bionic optimization rely on the initial distribution
of high conductivity material, and which initial distribution
can get the best solution is unpredictable. So what is the
best solution of VP problem? This article will try to solve
it in another way. The original VP problem is discretized
and transformed to a normal combinatorial optimization
problem, which can be solved by modern optimization
algorithms such as random local search, simulated anneal-
ing and genetic algorithm. The later two algorithms are
developed in this article for VP problem, and are used to
solve some examples.
2. Math models

The 2D VP problem is shown in Fig. 1. The volume is
square, which is adiabatic on the boundary except the heat
sink Ts located on the middle of bottom boundary. The
width of heat sink d is much less than L. The volume has
uniform heat source q. The volume of kp material Vp is
much smaller than the total volume V. The filling ratio is
defined as / = Vp/V, about 2–15%.
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The math model of the VP problem is:

minðmax T Þ ð1Þ

s:t: rðkrT Þ þ q ¼ 0 ð2Þ

T ¼ T s �d=2 < x < d=2; y ¼ 0

oT =ox ¼ 0 x ¼ �L=2; L=2

oT =oy ¼ 0 y ¼ 0; L; x < �d=2; x > d=2

8>><
>>: ð3Þ

Z
V p

dV ¼ /V ð4Þ

Eq. (1) is the objective and Eqs. (2)–(4) are the constraint
conditions. Eq. (2) is the energy conservation equation, in
which k is different for base material and high conductivity
material; Eq. (3) is the boundary conditions of the energy
conservation equation; Eq. (4) is the constraint for high
conductivity material.

The optimization problem of VP is difficult to solve
because it is a nonlinear optimization problem. Eq. (2) can-
not be solved analytically, while it can be solved by numer-
ical method such as finite difference and finite volume
method. We can divide the volume into small cells by
n � n grid uniformly, shown in Fig. 2, and solve the tem-
perature field using finite volume method. Each cell is an
element with determinate conductivity and uniform tem-
perature. Then Eq. (2) is transformed to a group of linear
algebraic equations [13]:

AT ¼ b ð5Þ

where A is the coefficient matrix depended on the distribu-
tion of conductivity; b is a vector of source term related to
q, and T is the temperature vector of all elements. Eq. (7)
can be solved effectively using Cholesky factorization [14]
because A is a positive definite, symmetric, sparse matrix.

Now the VP optimization problem becomes a linear
optimization problem:
Fig. 2. Discrete Volume-to-Point problem.
minðmax T iÞ ð6Þ
s:t: AðP ÞT ¼ b ð7ÞX

i

pi ¼ m; pi ¼ 0; 1 ð8Þ

where P = {piji = 1,N} stands for distribution of high con-
ductivity material, m = /N, is the number of kp elements. If
pi = 1, conductivity of element i is kp, otherwise k0. A de-
pends on P, and each combination of P is a solution of
the problem. Given a combination of P, the temperature
distribution T can be solved, and the maximum tempe-
rature is got. So the new optimization problem is a
combinatorial optimization problem. This combinatorial
optimization problem seems like a NPC or NP-hard prob-

lem [15] because the combination of P is
N
m

� �
. It is diffi-

cult to find a polynomial algorithm for this problem to
get the best solution, but the approximate best solution
can be got by some modern algorithms such as simulated
annealing [16] and genetic algorithm [17].

3. Algorithms

3.1. Simulated Annealing

The Simulated Annealing (SA) exploits an analogy
between the way in which a metal cools and freezes into
a minimum energy crystalline structure (the annealing
process) and the search for a minimum in a more general
system [16]. In the optimization process, the solution ran-
domly walks in its neighborhood with a probability deter-
mined by Metropolis principle [18] while the system
temperature decreases slowly; when the annealing temper-
ature is closing zero, the solution stays at the global best
solution in a high probability.

The procedure of SA for VP problem is:

(1) randomly choose an initial solution P, calculate its
maximum temperature Tm; set system temperature
t: = t0;

(2) do the random walk for K loops: randomly choose a
neighbor of P, P0 ; calculate maximum temperature of
P0, T 0m;
if Tm > T 0m or exp(�(T 0m > Tm)/t) > random[0,1)
P ¼ P 0; T m ¼ T 0m
(3) if terminating condition is matched, stop; else,
annealing: t: = at, go to (2)

where t is the system annealing temperature which has no
relations to temperature T. The initial annealing tempera-
ture t0 can be set as the volume’s mean temperature without
high conductivity material, because at this temperature
almost all walk of solution can be accepted. K should be
several times of N, random [0,1) is a random number less
than 1 and no less than 0, generated by an uniform distribu-
tion random number generator. The annealing schedule is
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tk+1 = atk, where 0.85 < a < 0.95. The terminating condi-
tion is: if P has not changed for dozens of loops, stop
annealing and return P as the best solution.

The solutions got by SA are approximate to the global
best solution, but seldom equal to it exactly for large scale
problem (N > 50). The performance of SA depends on the
algorithm of neighbor selection. The algorithm used in this
article is: randomly chooses an element of kp, exchanges its
conductivity with an element of k0 randomly chosen, and
the distance between the two elements is randomly chosen
by a normal (Gauss) distribution random number genera-
tor. To improve the performance, tempering–annealing
algorithm [19] is used: when solution has not changed for
dozens of times, increases annealing temperature t then
do annealing procedure again; repeat tempering–annealing
for several times and return the best solution.
3.2. Genetic algorithm

The genetic algorithm (GA) is based on the Darwinian
theory of nature selection and survival of fittest that exist
in the genetics of the species [17]. To use GA in VP prob-
lem, some techniques such as fitness, encoding of chromo-
some, crossover operator are implemented as:

� The sorting fitness function is used: sort the population
by their maximum temperature in descending order,
randomly select i individual with the probability 2i/
(M(M + 1)), where M is the population.
� Encoding of chromosome: chromosome is the distribu-

tion of kp material; we record the indexes of kp elements
to a vector, such as [3, 7, 15, 34, 55, . . . ], as the
chromosome.
� Crossover operator: select 2 chromosomes from repro-

duction, randomly change their genes (indexes of kp ele-
ments) to product 2 children.
� Mutation operator: randomly change a gene of the

chromosome.

The GA’s procedure is:

(1) randomly choose M distributions of kp as the initial
population;

(2) calculate the maximum temperature of each
chromosome;

(3) sort the population and generate reproduction;
(4) do crossover for every 2 of reproduction, product the

children population;
(5) randomly choose a chromosome from children popu-

lation, do mutation;
(6) if terminating condition is matched, stop; else go to

(2).

The population M can be several times of elements, and
terminating condition is the same as that of SA. During the
GA’s procedure, the best 2 individuals of each generation
are saved and delivered to next generation without
changes.

GA can get the global best solution theoretically, but it
can only get approximate best solution due to the limita-
tion of population scale.

4. Results and analysis

The optimized results of VP problems depend on grid
number, d, k̂ and /, but have no relations to L, k0, q and
Ts. To compare the results with that by constructal theory
and bionic optimization algorithm (BO), the nondimen-
sional thermal resistance of overall is defined referring to
Ref. [1]:

q ¼ DT max

qL2=k0

ð9Þ

q is determined by distribution of kp material, the better
distribution, the lower q.

4.1. Compare with bionic optimization algorithm

Several cases of different grid numbers: 21 � 21,
51 � 51, 101 � 101 and different k̂: 3, 10, 100 are solved.
In these cases the width of heat sink is one element’s length
and / is 0.1. These cases are also solved by bionic optimi-
zation algorithm, so that the results can be compared.

The distribution of kp material got by SA/GA algo-
rithms for 21 � 21, k̂ ¼ 3; 10; 100 are shown in Fig. 3.

Fig. 4 is the results for 51 � 51, k̂ ¼ 3; 10; 100 by SA.
Fig. 5 is the results for 101 � 101, k̂ ¼ 3; 10; 100 by SA.

The results got by BO for the same cases are shown in
Fig. 6.

From these results, we get the shape’s characteristics of
high conductivity material of VP problem: All high con-
ductivity material is continuous and there are no holes in
it; For cases with low k̂, the shape of high conductivity
material is thick and short, surrounding the heat sink; As
increasing k̂, the shape becomes slender, and extends to
the corner far from the heat sink.

The shapes of kp material got by combinatorial optimi-
zation algorithms are similar to the simulated structures of
river drainage basins presented in Chapter 6 of Ref. [2].
The river drainage basin is also a kind of volume-to-point
dissimilar problem, which is an optimization problem to
minimize the overall resistance by arranging the internal
structure. The algorithm used to get river drainage network
in Ref. [2] is an evolutionary process: in each step, increases
flow-rate parameter M from zero to critical value Mc, then
replaces the dislodged blocks of k0 material with kp mate-
rial. The algorithm is different from the combinatorial opti-
mization algorithm in this article.

The nondimensional thermal resistance of these cases
are listed in Table 1, where the third row is the difference
of the two algorithms. For low k̂, the difference between
SA/GA and BO is small, while for high k̂, results got by
SA/GA are much better than that by BO.



Fig. 3. Results by SA/GA for 21 � 21, k̂ ¼ 3; 10; 100.

Fig. 4. Results by SA for 51 � 51, k̂ ¼ 3; 10; 100.
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The algorithms developed in this article can also be used
to optimize the mean temperature of the volume, by chang-
ing the objective of Eq. (6) to min

P
T i. The mean temper-

ature optimized by SA is also lower than that by BO. Fig. 7
is the results by SA and BO for minimizing mean temper-
ature with grid of 51 � 51, k̂ ¼ 100. Mean temperature
got by SA is 17.3% lower than that by BO. For other cases,
results optimized by SA/GA are also better than that by
BO, especially for high k̂.

4.2. Compare with constructal theory

Comparison of combinatorial optimization algorithms
and constructal theory is also taken. Suppose that



Fig. 5. Results by SA for 101 � 101, k̂ ¼ 3; 10; 100.

Fig. 6. Results by BO for 101 � 101, k̂ ¼ 3; 10; 100.

Table 1
q got by SA/GA and BO for different grids and k̂

Grid 21 � 21 51 � 51 101 � 101

k̂ 3 10 100 3 10 100 3 10 100

SA/GA 0.7759 0.3915 0.1107 0.8268 0.4081 0.0792 0.9375 0.4244 0.0726
BO 0.7793 0.4010 0.1539 0.8690 0.4168 0.1091 0.9395 0.4385 0.0916
Diff. (%) �0.4 �2.4 �28.1 �4.9 �2.1 �27.4 �0.2 �3.2 �20.7
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Fig. 7. Results by SA and BO for 51 � 51, k̂ ¼ 100.

Fig. 8. Results by constructal theory and SA (50 � 50 and 100 � 100), k̂ ¼ 100, / = 0.04.
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k̂ ¼ 100 and / = 0.04, according to Ghodoossi [9], the ele-
ment area got by constructal theory (see first figure in
Fig. 8) is better than high order assembly because
k̂/ ¼ 4 < 8, and the optimal shape is square because

H
L

� �
opt

¼ 2

ffiffiffiffiffiffi
1

k̂/

s
¼ 1 ð10Þ

The optimized nondimensional thermal resistance pre-
dicted by constructal theory is [1,9]

q ¼ 1

2

ffiffiffiffiffiffi
1

k̂/

s
¼ 0:25 ð11Þ

The nondimensional thermal resistance of element area cal-
culated by numerical method is 0.2083. The difference be-
tween numerical and theoretical results is caused by the
simplification of constructal theory. The nondimensional
thermal resistance for the same problem optimized by SA
using grid of 50 � 50 is 0.1855, about 10.9% lower than
that by constructal theory, and it is 0.1517 using grid of
100 � 100, about 27.2% lower. The shapes got by construc-
tal theory and SA are shown in Fig. 8.

For another case, suppose that k̂ ¼ 400 and / = 0.04, so
the first order assembly construct is the best shape by con-
structal theory because k̂/ ¼ 16 > 8, and the optimal num-

ber of constituents n ¼
ffiffiffiffiffiffi
k̂/

q
¼ 4, optimal ratio of length

and width is L=W ¼
ffiffiffi
2
p

, the porosity of element level is
/0 = //2 = 0.02 [9]. The optimal structure is shown in
Fig. 9, in which the heat sink is located on the middle of
bottom border, 2% of border width. The theoretical opti-
mized nondimensional thermal resistance is [9]

q ¼
ffiffiffi
2
p

k̂/
¼ 0:0884 ð12Þ

while the numerical result is 0.0751. The nondimensional
thermal resistance got by SA using grid of 100 � 100 is
0.0595, 20.8% lower than that by constructal theory. The
shapes got by constructal theory and SA are shown in
Fig. 9.



Fig. 9. Results by constructal theory and SA (100 � 100), k̂ ¼ 400, / = 0.04.
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According to these shapes, the shapes got by SA are
better than that by constructal theory because the high
conductivity material is more close to the corner.

5. Conclusion

In this article, a new method is developed to solve VP
problem, which transforms the original nonlinear optimi-
zation problem to a combinatorial optimization problem,
then uses combinatorial optimization algorithms to search
the best combination of high conductivity material. This
method can find the best solution theoretically, but due
to limitations of computing capability only approximate
best solution can be got. Comparing to bionic optimization
algorithm and constructal theory through some cases, per-
formance of the new method is better than them, especially
for high conductivity ratio of high conductivity material
and base material.

The shapes got by the new method and bionic optimiza-
tion algorithm are similar, but more complicated than that
by constructal theory. The shapes of high conductivity
material change with the value of k̂: when k̂ is low, the
shape is thick and short; when k̂ is high, the shape becomes
slender. The shapes also change with grid number of the
volume. The complexity and performance increase as grid
number increases, especially for high k̂. The grid number
is limited by manufacturing restrictions in practice. The
computing time of the new method is highly correlated
with grid number. For big grid number, parallel computing
should be applied to SA and GA with high performance
[20].

The new method can be easily generalized for more com-
plex VP problems, such as nonuniform heat source, irregu-
lar shape, which are difficult for constructal theory. It can
also be used for flexible objective. Besides minimization
highest temperature and mean temperature of the whole
volume, it can also optimize the temperature of a sub-vol-
ume inside of the volume, that is difficult for the other
methods.
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